Object Classification at the Nearby Supernova Factory
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We present the results of applying new object classificaggohniques to the supernova search of the Nearby Supernova
Factory. In comparison to simple threshold cuts, more stighited methods such as boosted decision trees, random
forests, and support vector machines provide dramatitetter object discrimination: we reduced the number of non-
supernova candidates by a factor of 10 while increasing opersova identification efficiency. Methods such as these
will be crucial for maintaining a reasonable false positiaee in the automated transient alert pipelines of upcorairge
optical surveys.

1 Introduction The search uses data from the Near Earth Asteroid Tlack-
ing (NEAT) program and the Palomar QUEST consortitim

Upcoming large scale optical surveys such as Pan-STARRSIng the 112 CCD QUEST-Il camera (Baltay et al. 2007)

and LSST intend to generate automated rapid-turnarouad the Palomar Oschin 1.2-m telescope. This search is the

transient alerts for objects such as supernovae, actiae-gallargest data volume and sky area supernova search currently

tic nuclei, asteroids, Kuiper Belt objects, and variabtgst operating and thus is a good testing grounds for data pro-

Microlensing surveys and gamma ray burst (GRB) detecessing and object identification issues relevant to future

tors have successfully generated automated alerts witHasge-scale optical surveys.

low false-positive rate, but their situation is rather eliff

ent from that of large scale optical surveys. GRB detectors

have significantly lower background events rate than optica

surveys, and microlensing events are based upon a trend in

a lightcurve rather than a single observation. Future largg  C|lassification Methods

scale optical surveys face a fundamentally different probl

with their automated alert pipelines, since they attempt to

identify optical transients at the time they are first image%upernova searches typically select objects of interest by
Since their observation cadence will typically be days in-

. . X applying simple threshold cuts to features such as signal-t
stead of hours or minutes, large optical surveys will not beIOp ying b . . . gn
) ) noise, FWHM, object motion between two images, etc. If
able to wait for a lightcurve of measurements before gen

. ) i . %h object fails any of these cuts, it is rejected. These cuts
ating an alert. In comparison to current optical transieat p

rams. future survevs will need to have sianificant betté’lrre easy to understand but do not reflect the subtleties of a
9 ' y 9 Y -multidimensional space, where variables may be correlated

agnal/background even.t .separatlon in order to avoid be"?;lgld have outliers in their distributions. An object whichtju

swamped with false positive alerts. barely fails one of the cuts is still rejected the same as an ob
ject which fails many cuts. To use threshold cuts, one must

2 The Nearby Supernova Factory find uncorrelated variables without significant outlierstsu
that every cut maintains a high signal efficiency while re-

The Nearby Supernova Factory (Aldering et al. 2002) is igcting background.

program to discover 100-200 type la supernovae in the red- )
shift range0.03 < » < 0.08 and spectro-photometrically ~ Althoughcommonly used in supernova searches, thigesh-

measure their lightcurve evolution. This dataset will bec.is ©/d cuts are widely recognized as being a non-optimal mdghod
for cosmological fits of the expansion of the universe anf@" Signal/background separation problems. The following
dark energy; it additionally provides a detailed sample fg3ections describe a variety of more powerful techniques for

understanding the underlying physics of type la supernovdgentifying optical transients in difference images. Fert
details about these methods may be found in Bailey et al.

* corresponding author: sjbailey@Ibl.gov 2007.
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Fig.2 Support vector machines (SVMs) map an input space of

yes
features into a higher dimensional space where the separati

classes becomes easier. In this toy example, the open aedl fill

F'g' L bI.EXEimg.lff deC|tI5|ot?] trele Wh'.Ch V\ll(:u'd treat h',gl;ns'gnal-toi:ircles require multiple boundaries to separate them imtlgnal
hoise objects differently than low signal-to-noise objeth prac- ¢ acer, but in the higher dimentional spa¢e, z*) they may be
tice, a real decision tree has many more branches and the sagﬁ

} . . ‘Separated by a single line.
variable can be used to branch at many different locationk wi E y g
different cut values.

increased, and the process is repeated to form newrees.
3.1 Decision Trees This iteratively produces a set of increasing quality deci-

sion trees. The final classifier uses the weighted ensemble
Decision trees (Breiman et al. 1984) separate signal froaverage of all of the trees to make a classification decision.
background events by making a cascading set of event spllise boosting provides decision trees with better separatio
as shown in Figure 1. A training procedure automaticallpower, and the ensemble average washes out the training
selects the features and cut values to generate a tree viitstabilities associated with single decision trees. Ipliap
maximal separation of signal and background events in tisations with~20 or more input features, Boosted Decision
terminal nodes. Trees can provide significantly better results than arafici

For a set of events, define the signal purity Rs= Nneural networks (Roe et al. 2005).

Ns/(Ns + Ng), whereNg andNp are the number of sig-

nal and background events in the sample. The “Gini para®-; 5 Random Forests

eter” P(1 — P) is 0 for a sample which is purely signal or

purely background, ang 0 otherwise. The training proce- Random forests (Breiman 2001) also generate multiple de-

dure for a decision tree begins with a set of events of knovgision trees for a given training set and use a weighted aver-

type and considers all features and possible split valuesgge of the trees as the final decision metric. When training

minimize Ginijeft chila + Ginirignt chila- The training sam- g tree, at each branch the training cycle only considers a

ple is split and the procedure is recursively applied tdfert random subset of the possible features available to uss. Thi

split the subsamples. The splitting is stopped when the safs the effect of washing out the typical training instaieii

ples have reached a minimum required size (a minimum sige decision trees and produces a ensemble classifier which

requirement prevents overtraining on statistical fludtuet s fast to train and robust against outliers.

of small samples) or no split can be found which would im-

prove the overall quality of the tree. Terminal nodes with a )

majority of signal events are called signal leaves; otheewi3-2 Support Vector Machines

thgy are backgrpund Ieaves.. When new events are eva!gaﬁ% support vector machine (SVM) algorithm is a classifi-

using the decision tree, their signal/background classific __.. . .

s . cation method that nonlinearly maps data points from the

tion is assigned based upon whether they correspondtg a . . . . .

signal or background leaf. original input space to a hlgher-dlmensmnal feature.space.
where the separation boundary is a hyperplane (Vapnik [J998;

Chen et al. 2005). Figure 2 shows a toy example where open

3.1.1 Boosted Trees and filled circles require multiple boundaries to separate
them in the original space, but in the higher dimensional

Boosting algorithms improve the performance of a classifighace(z, 22) they may be separated by a single line.

by giving greater weight to events that are hardest to clas- The optimization problem for finding the hyperplane is

sify. In the case of decision trees, a tree is trained on afsetQ structed such that the solution depends only upon the
data, misclassified events are identified and their weights a

- 3 See Bailey et al. 2007 for the generalization of the puritg &ini
! http://neat.jpl.nasa.gov parameters to the case of weighted events and details ofoibstibg of
2 http://hepwww.physics.yale.edu/quest/palomar.html those weights.
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102 Overall, for a fixed signal efficiency, boosted trees and
8 Cuts e _ran(_jom forests provided 30 times_better b_ackground re-
A SN jection than threshold cuts. After introducing boosted de-
o ws e ' E cision trees to the SNfactory search pipeline, we chose to
95 SVM.coe operate at a selection point withl0 times less background
S, 104l ] but with an improved signal efficiency.
% Random forest_ - o . .
i Boosted decision trees 5 Discussion
0'5 ! ! ! !
0.0 0.2 0.4 0.6 0.8 1.0 In general, supernova seaches have not attempted to com-
True positive rate (signal efficiency) pletely automate candidate selection and announcemelgt, an

Fig.3 Comparison of boosted trees, random forest, SVM, aritius have only improved their classification methods to the
threshold cuts for false positive identification fractiemtrue pos- point of achieving a reasonable workload, which tends to in-
itive identification fraction. volve vetting 10-100 false positives for each good candidat
selected. Significantly more improvement will be needed to
ake completely automated rapid-turnaround optical tran-

events that are closest to the boundary (the “support vels

tors”). These events are identified and the hyperplane sient alerts viable. At the Nearby Supernova Factory, fur-

. L ther improvements could be readily obtained by improv-
rameters are determined by the optimization. The depen- e
. . ing the set of features used for classification. For exam-

dence of the solution only upon the support vectors is cons;

ceptually similar to boosting algorithms which give gresate ple, one pf our primary remaining backgrlound.s 'S & S.Ub_
X e . traction dipole which results from subtracting slightlysmi
weight to difficult to classify events.

c ionallv. the the hiaher-di ional __aligned stars. Any classifier of our data would be improved
_ omputa;t_lo_nal Y tl € It ed \gher- |hmens||or_1a malpptljngy adding a feature that specifically measures this effect.
Is never explicitely calculated since the solution only de-" |, practice, there is no substitute for high quality data

pends upon dot products of vectors in that space. InSte%(fjrd a well understood detector; any problems with back-

a "kernel-trick” is used to map dot products in the high di'ground events should first be addressed at the level of the de-

mensioKnaI spr?ce toa kernel fungtidﬂgl,xg) — ?(xl) " tector and image processing pipeline if possible. But fitur
¢(xz2). Kernel functions can provide quite general mappin tical surveys will require both high quality input datalan

to hlgher_d|mﬁn5|onalblspaces r\:‘_’h'le kleeplng the zroble werful classifiers in order to maintain reasonable false
Eomp&;taﬂgna ytra;:]tad e."z%r; IS ana;]yst:shwedlljse & SOlositive rates in their automated transient alert pipsline
oundary SVM method called-SVM, which handles noidy 1,6 methods presented in this work provide dramatically

data by allowing (but penalizing) events on the “wrong”sidg e ohject discrimination than methods otherwise eyezli
of the hyperplane while solving for the optimal hyperplan y current supernova searches.
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